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ABSTRACT

In this paper, we describe a non-linear feature normalization based
on Riemannian differential geometry. This feature normalization will
yield parameters that are invariant under any bijective stationary trans-
formation. Moreover, it is robust to additive noise that is uncorrelated
with speech and quasi-stationary. The only requirement is that of er-
godicity. The frontend is called SWAMP (Sweeping Metric Parameter-
ization).

The frontend assumes that speech resides in a small, smooth man-
ifold that is entirely and densely explored during the course of an ut-
terance. It first observes the tangent spaces on every point of the man-
ifold. This defines a local Riemannian geometry. Under this geome-
try, we are able to measure geodesic lengths on the manifold. These
lengths are invariant under non-linear transformations. Therefore, we
are able to locate a point invariantly by measuring its relative distance
to all other observed points. Through classical multi-dimensional scal-
ing, we map this triangulation to a canonical, Euclidean, isometric
space inherent of the observed manifold.

Combined with standard features, SWAMP features are shown to im-
prove speaker clustering on Broadcast News.

1. INTRODUCTION

State-of-the-art speaker clustering is chiefly based on variations of
speech recognition features. It is usually argued that such features are
inadequate for the goal of distinguishing between speakers.

In this paper, we consider the audio stream as a solid. The solid’s lo-
cal characteristics are normalized via devices of differential geometry.
The algorithm presented herein relies on tried and true mathematical
methods of physics of relativity and psychology. In this sound math-
ematical framework, we aim at achieving two of the most desirable
properties among frontends: acquisition channel independence, and
noise-robustness.

Intuitively, the algorithm will re-write reference points in a Eu-
clidean space that is naturally deduced from the manifold structure
painted by the speech. To that end, it enables devices from Rieman-
nian differential geometry, numerical analysis, graph theory, and opti-
mal dimensionality reduction.

2. THE ALGORITHM

2.1. Preliminary definitions

We start with a few definitions. We observe the signal x(t), or xt,
t ∈ [0; T ], of dimension D. The final reparameterized signal will be

s(t) of dimension E. First, define the time-average of a function f :

〈f〉p
4

= lim
T→∞

1

T

∫ T

0

dt

{

Ip(xt)f

}

(1)

where Ip(·) is the indicator function of an infinitesimally small region
around p. Unless otherwise stated, we will assume ergodicity through-
out:

〈f〉 = Ef, ∀f, (2)

where E(·) is the expectation.
The total difference theorem is useful in proving properties:

dy =
∑

k

∂y

∂xk
dx

k =
∂y

∂xk
dx

k
, (3)

where the second equality is in the Einstein summation nota-
tion (e.g. [1]), which we use throughout.

We define three mathematical properties that are desirable for fron-
tends: invariance, ergodicity, and noise-robustness. Invariance means
that under a transformation R

D → R
D:

x 7→ x
′ = x

′(x), (4)

properties will remain the same. This is also called parameterization-
independence. For instance, time axes are independent. Moreover,
we say that a property is intrinsic, or natural, if there is one unique
way of defining it invariantly by the manifold only. For instance, the
dimension of a manifold is intrinsic. However, tangent vectors are
not intrinsic but the tangent space is. Ergodicity ensures that with an
ergodic time sequence, the outcome will also be ergodic. For instance,
time reference is not ergodic. Finally, noise-robustness implies that
some properties may be reasonably well estimated when the signal is
corrupted with additive noise.

Finally, we define the Jacobian matrix J :

[Jik] =
dx′i

dxk
.

In general this matrix is non-symmetric, but we assume it invertible
|J | 6= 0.

2.2. Differential Geometry

Differential geometry is concerned about infinitesimal changes around
a point in a manifold. In this mathematical field, manifolds are always
C∞ (smooth) and never abstract. There are two convenient ways of
visualizing such a manifold of dimension S: firstly, as a solid in S-
dimensional space, or secondly, as a surface embedded in an (S + 1)
space. One of the most important predicates in differential geometry



is that of coordinate invariance. It means that differential geometry
manipulates vectors in a way that does not depend on a specific choice
of coordinate. It also means that two manifolds are indistinguishable if
they only differ by a homeomorphism. The latter point is a limitation
to which we will come back later. The speech manifold will be called
M.

Fig. 1. A manifold with a reference system (grid).

Differential geometry is the device through which we will achieve
transformation invariance. Imagine the representation of a manifold
as in Figure 1. We will extract entities which are invariant under any
deformation of the solid. Deformations correspond to change in coor-
dinates. Coordinates are also non-homogeneous, or local: they depend
on the position of the point in the manifold. The space that they span is
called the tangent space. The tangent space is a linear approximation
of the surface at the point.

Relativistic physics makes heavy use of differential geometry. We
introduce two concepts: covariance and contra-variance. They corre-
spond to respectively: going against or in the direction of variabilities.
The original coordinate space is contravariant. Co- and contra-variant
are usually represented with lowered and raised indices respectively.

Following work by Levin [2] and Schrödinger [3], we define a
Riemannian metric by measuring, at each position p, the directional
derivative along the speech trajectory x(t).

We define the sweeping metric to be:

g
kj(p)

4

=

〈

dxk

dt

dxj

dt

〉

p

. (5)

This defines a Riemannian contravariant tensor G of type 2: it is a bi-
linear symmetric, positive definite form with two raised indices. We
will omit p where obvious. This tensor can be transformed into a co-
variant tensor of type 2 by matrix inversion:

G
−1 = [gkj ] = [gkj ]−1

. (6)

Length, volume, and angles are invariant of parameterization under
this metric. We are primarily concerned with lengths ds2 of infinitesi-
mal changes dx = [dx1, dx2, ..., dxD]T :

ds
2 = gkjdx

k dx
j = dx

T
G

−1dx. (7)

It is trivial to see that a change in coordinates will not change under a
transformation x′:

ds
′2 = dx

′T
G

′−1
dx

′ = ds
2
, (8)

with
dx

′ = Jdx, G
′ = JGJ

T
. (9)

Infinitesimal length can be measured invariantly at any point p of the
manifold, thanks to the sweeping metric.

We observe that there is a lack of directionality: no vectors can
be defined invariantly without further information, only contra- or co-
variantly. In particular, Principal Component Analysis (PCA) cannot
be applied at this stage.

2.3. Triangulation – Geolen reference

The next question to answer is: is there a natural coordinate system
associated to the manifold, where we can rewrite the curve x(t) natu-
rally? In this section, we define an invariant coordinate system, which
will be extend to a natural coordinate system with multidimensional
scaling [4].

We have observed that the time reference is an invariant property of
the system. We shall then define a reference system whereby a point
is defined by distance with respect to all other points in the manifold:
this is a triangulation. Consider two points p, q ∈ M. Let a curve
γ : {γ(t) ∈ M}, such that γ(0) = p and γ(1) = q. The geodesic
length, or geolen is the shortest line distance [5]:

∆2(p, q) = min
γ

∫

γ

ds
2 (10)

Therefore, each point x(t) can be re-parameterized in an invariant ref-
erence system:

∆k(t) = ∆[x(t), x(k)], k = 1, ..., T. (11)

Although this measure seems straightforward to define, it is the major
practical hurdle.

2.4. Isometric reference system

Although the geolen reference is invariant, it suffers from one major
drawback: it is not ergodic. Suppose we repeat the speech twice: the
coordinates will be twice as long. A time shift will shift all coordinate
indices. This is usually not advisable.

Therefore, the last step of our algorithm enacts a dimensionality
reduction technique most popular in psychology. It is called classical,
metric multidimensional scaling). Given a distance matrix ∆2

kj =

∆2

k(j) from (eq. 11), we can define a doubly-centered distance:

B
∗

kj = −
1

2

[

∆2

kj − D
−1

∑

l

[∆2

kl + ∆jl] + D
−2

∑

l,m

∆2

lm

]

. (12)

The spectral (or eigen) decomposition of B∗ is:

B
∗ = UΛU

T
. (13)

It is truncated as usual to the E largest eigenvectors and eigenvalues.
The new coordinate system will define:

s(t) = Λ
1/2

E U
T
E (t). (14)

This E-dimensional vector will be the new parameterization. It is nat-
ural and ergodic. Because all distances can be computed in a Euclidean
homogeneous coordinate system, it is called an isometric system:

||s(t) − s(τ )||2 = ∆2(s(t), s(τ )) =
E

∑

k=1

[

sk(t) − sk(τ )

]2

. (15)

We come back to the note in the introduction of differential geometry:
the coordinate system is defined up to a rotation (homeomorphism).
The fundamental axes are defined in the principal directions of energy:
they depend on the population of the sampling x(t) of the manifold
M. If the sampling is ergodic, then the axes are well-defined. In other
words, we are sensitive to the linguistic content of the speech. We
hope that silence/speech will help fix the axes. Otherwise, an extrinsic,
“oracle” probability measure must resolve the ambiguity.



2.5. Noise robustness

Under certain conditions, the frontend can be robust to additive noise.
The noise model is:

x̃(t) = x(t) + w(t). (16)

The sweeping metric becomes:

g̃
kj = g

kj +
〈

ẇ
k
ẇ

j
〉

+
〈

ẋ
k
ẇ

j + ẋ
k
ẇ

j
〉

, (17)

where ḟk(t) = dfk

dt
for x and w. A sufficient condition for g̃kj = gkj

is that ẇ ≈ 0, or that the noise be stationary. Similarly, the infinitesi-
mal length becomes:

ds̃
2 = ds

2 + dw
T
G

−1dw + 2dx
T
G

−1dw. (18)

Noise and speech are assumed uncorrelated so that the third term can-
cels. Additionally, if the noise contribution is constant on M, then
there is a constant bias on ∆ which also cancels.

Therefore, quasi-stationary noise which spans a space orthogonal to
M does not corrupt our features.

3. IMPLEMENTATION

The principle of the frontend was shown in the previous section. In
trying to extract the quintessence of the algorithm, we have chosen to
conceal major practical aspects of the implementation. Most of them
are due to the finite nature of the signal. We shall overview them here.

3.1. Quantization

The metric gkj(p) should, in principle, be computed for all points
p ∈ x(t) over an infinite period of time. In practice, it cannot be. Levin
proposes to quantize the contravariant space linearly, and then to inter-
polate tangent spaces. This involves the computation of the derivative
of the Riemann metric along a direction m, also called Christoffel sym-
bol of the second kind:

Γm
ij =

1

2
g

km

(

∂gik

∂xj
+

∂gjk

∂xi
−

∂gij

∂xk

)

. (19)

Parallel transportation of a tangent vector along a curve γ is:

δx
j = dx

j + Γj
ikdx

idx
k
. (20)

Unfortunately, in general this involves solving large Ordinary Differ-
ential Equations. This procedure is numerically unstable. Two prob-
lems arise: first, the manifold can be interpolated anywhere on the
space; second, the quantization is contravariant and not invariant. The
first problem arises if the manifold surface is non-convex, e.g. it is
a donut or toroid. Moreover, in [2], the method works well with
strongly directive, low-dimensional spaces. Therefore, the curse of
dimensionality makes the approach infeasible because the density de-
creases polynomially with the feature dimension D.

We avoid the computation of tangent spaces at ill-conditioned points
altogether by using vector quantization to cluster the time points. This
is done initially using a contravariant measure of distance, but then it
is replaced with s2(p, q) and quantization iterates. The update of the
centroid satisfies:

yc = arg min
y

∑

dq

ds
2(y, dq). (21)

It is the empiric mean of the cluster. Our clustering is relatively invari-
ant, that is, under a transformation x′ = f(x), if we perform clustering
Q′, we have:

Q
′(x′ = f(x)) = f(Q(x)). (22)

In other words, points are grouped the same in both coordinate sys-
tems and f and Q commute. With quantization, our sweeping metric
of (eq. 5) defines an invertible metric tensor invertible. It is also possi-
ble to have degenerate spaces for certain regions of the manifolds, for
instance, where there is silence.

3.2. Geodesics in local metrics

Now we show how to compute the length from any point p to any
nearby point q. We assume a piecewise flat structure of the manifold:
around each centroid, the doubly covariant tensor gkj is valid. In a
very near neighborhood around a centroid c, we have:

s
2

c(p, q) = (p − q)T
G

−1

c (p − q). (23)

Suppose now that we have two regions a and b, we define V (a) the
Dirichlet region of a to be the set of of points p closest to a:

V (a) =

{

p : s
2

a(p, a) ≤ s
2

b(p, b), ∀b

}

. (24)

We call the quadratic hyper-surface for which there is equality the
Voronoi interface π(a, b). The geolen between two points xa, xb, one
in the V (a), and one in V (b), is a two straight segments intersecting
at a point z on the Voronoi interface π(a, b). We can write the point z:

z = xa + za = xb + zb. (25)

We can minimize over z:

H(z) = s
2

a(xa, z) + s
2

b(xb, z), s.t. z ∈ π(a, b). (26)

We suppose that the are entirely contained in their Dirichlet regions.
The other case will be treated later. Using the Lagrangian multiplier
λ, we find:

za =

{

(1−λ)A+(1+λ)B

}−1
[

(1+λ)B∆c+B∆x+λ(B−A)xa

]

and in the unconstrained case:

za|λ=0 = (A + B)−1
B(∆c + ∆x). (27)

There is no closed-form solution, but a Newton-Raphson [6] iteration
over λ will converge quickly.

3.3. Tunneling

M

Fig. 2. Tunneling: it is shorter to go “under” the manifold with the
dotted line.

As seen on Figure 2, we have to be careful to integrate distances
over manifold surface. In (eq. 10), we assume that γ is always on
M. Otherwise, we could go “under” a local bump in M and reducing
lengths artificially: this should be avoided. Similarly, a small local dip
will introduce an effect called bridging. It is less crucial because of
local lengths are then integrated in the graph.

Suppose that we have two points x1, x2 in the V (a). The segment
is parameterized with Φ ∈ [0; 1]:

x(Φ) = x1 + Φ∆x = x1 + Φ(x2 − x1). (28)



We perform a Dirichlet test to see whether the segment intersects an-
other Voronoi region b:

0 <

[

||∆x||2a − ||∆x||2b

]

Φ2 + 2

[

〈∆x, x2 − cb〉b−

〈∆x, x2 − cb〉a

]

Φ + ||x2 − cb||
2

b − ||x2 − cb||
2

a,

with ca and cb the centroids of V (a) and V (b), and associated inner
products 〈·〉a,b. If this inequality can become true, then we are tun-
nelling. In this case, we set the local distance to ∞.

Another tunneling effect occurs at the higher level. In Figure 2, we
still tunnel because the local metric at the tip of the bump yields a small
Dirichlet region. We define adjacency of centroids if they are locally
close. This is in general difficult to discover: it is the weakest point of
the isomap algorithm [7]. Luckily, in our case, it is possible to define
adjacency by watching the time curve x(t): two Dirichlet regions a
and b are adjacent if ∃τ such that x(τ ) is in b and x(τ − 1) is in a
or vice-versa. The local distance between two points in non-adjacent
Dirichlet regions is ∞.

3.4. Geolen integration over a discrete manifold

We have now computed all local metrics by carefully avoiding the tun-
neling effect. It can be thought of as computing the ds2 lengths. To
integrate the length as in (eq. 10), we need to compute the minimal
integrals over a discrete manifold. The sampled manifold, endowed
with local lengths, is an undirected weighted graph. From this graph,
we would like to construct a fully connected graph with all minimal
pairwise distances. This is done conveniently via an adaptation to
undirected graphs of the Floyd-Warshall algorithm [8], which solves a
problem called the All Shortest Paths problem (ASP).

3.5. Multi-dimensional scaling

Multidimensional scaling involves computing the SVD of a matrix
with many zero eigenvalues. When the size of the matrix is greater
than 10 × 10, this poses extraordinary numerical difficulties to stan-
dard linear algebra software. We add white noise to the observations,
or a multiple of the identity to the B∗ matrix:

B̃
∗ = B

∗ + εI, (29)

where 0 < ε � 1 ensures strict positivity. This stabilizes the process.

3.6. Summary

We can therefore summarize the algorithm in three simple steps: com-
putation of the sweeping metric at all quantization centroids, compu-
tation of the geolen reference, and transformation of the geolen into an
isometric reference. The computation of the sweeping metric utilizes
vector quantization: it will compute gkj and gkj for all Voronoi re-
gions around each centroid. The geolen reference ultimately yields the
∆ matrix, which relates each point to all other points. It is computed
via Lagrangian optimization of small distances on nearby points. It
is converted into global geolen via Floyd-Warshall. Finally, a spectral
decomposition of the distance matrix yields the final coordinates s(t).

4. EXPERIMENTS

The NIST 2002 Rich Transcription BN evaluation test set (RT-02) was
selected for validation. It consists of six 10-minutes excerpts of Broad-
cast News. It was clustered using full, single Gaussian, BIC-penalized
models [9]. MFCC coefficients were generated (13, excluding c0 and

including energy), at a frame rate of 100Hz, and normalized with a
centered sliding window cepstral mean normalization. Then, they were
normalized using our novel algorithm. Results with MFCC param-
eters, SWAMP parameters, and MFCC parameters concatenated with
SWAMP, are show on Table 1. Although our new parameters seem to
improve clustering, it appears that they do not contain enough infor-
mation in themselves to perform accurate clustering. We used NIST’s
RT-03S development scoring script SpkrEval-v20.pl. Thresholds and
dimensions were roughly optimized. The quantizer used 12 clusters.
To limit computational resources, the SWAMP frame rate was reduced
to 10 Hz.

Features Dimension Error rate
MFCC 13 18.58%
SWAMP 13 38.61%
MFCC+SWAMP 18 17.52%

Table 1. NIST Speaker Error with different frontends

5. CONCLUSION AND FURTHER WORK

In this paper, we define a sound theoretical framework for natural iso-
metric frontends based on differential geometry. It combines features
of Levin [2] and Isomap [7]; also, it adds many key elements includ-
ing sufficient conditions for noise robustness, tunnelling prevention,
naturalness, and ergodicity. The resulting parameterization is invari-
ant under wide-sense stationary transformations and quasi-stationary
noise.

We have used the Riemannian sweeping metric in this paper. It
is a convenient choice. However, frontends typically use a non-
Riemannian dualistic structure (time, log-spectrum, and cepstrum).
Therefore, further work will concentrate on non-Riemannian dualis-
tic structures based on information geometric inference [1].
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